Speech recognition with state-based nearest neighbour classifiers
نویسندگان
چکیده
We present a system that uses nearest neighbour classification on the state level of the hidden Markov model. Common speech recognition systems nowadays use Gaussian mixtures with a very high number of densities. We propose to carry this idea to the extreme, such that each observation is a prototype of its own. This approach is well-known and widely used in other areas of pattern recognition and has some immediate advantages over other classification approaches, but has never been applied to speech recognition. We evaluate the proposed method on the SieTill corpus of continuous digit strings and on the large vocabulary EPPS English task. It is shown that nearest neighbour outperforms conventional systems when training data is sparse.
منابع مشابه
Comparison of Classification Methods: Peril to Avoid for Binary and Multi Propose Combination Approach
ABSTRACT: Classification plays an important role in various fields like Object recognition, text categorization etc. Studying classifiers for purpose of estimating probability for a ce is crucial for classification .In this paper, we present a survey of four k Nearest Neighbour, Naive Bayes and Neural Network focusing on their merits and demerits.We will also shed light on combination of the ab...
متن کاملPresentation of K Nearest Neighbor Gaussian Interpolation and comparing it with Fuzzy Interpolation in Speech Recognition
Hidden Markov Model is a popular statisical method that is used in continious and discrete speech recognition. The probability density function of observation vectors in each state is estimated with discrete density or continious density modeling. The performance (in correct word recognition rate) of continious density is higher than discrete density HMM, but its computation complexity is very ...
متن کاملNearest-neighbour classifiers in natural scene analysis
It is now well-established that k nearest-neighbour classi"ers o!er a quick and reliable method of data classi"cation. In this paper we extend the basic de"nition of the standard k nearest-neighbour algorithm to include the ability to resolve con#icts when the highest number of nearest neighbours are found for more than one training class (model-1). We also propose model-2 of nearest-neighbour ...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملPresentation of K Nearest Neighbor Gaussian Interpolation and comparing it with Fuzzy Interpolation in Speech Recognition
Hidden Markov Model is a popular statisical method that is used in continious and discrete speech recognition. The probability density function of observation vectors in each state is estimated with discrete density or continious density modeling. The performance (in correct word recognition rate) of continious density is higher than discrete density HMM, but its computation complexity is very ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007